Fuzzy-Rough Set Bireducts for Data Reduction
نویسندگان
چکیده
منابع مشابه
Fuzzy rough approximations for set-valued data
Rough set theory is one of important tools of soft computing, and rough approximations are the essential elements in rough set models. However, the existing fuzzy rough set model for set-valued data, which is directly constructed based on a kind of similarity relation, fail to explicitly define fuzzy rough approximations. To solve this issue, in this paper, we propose two types of fuzzy rough a...
متن کاملFuzzy-Rough set Approach to Attribute Reduction
Attribute Reduction has a significant role in different branches of artificial intelligence like machine learning, pattern recognition, data mining from databases etc. This paper deals with reduction of unimportant attribute(s) for classification and decision making, using Fuzzy-Rough set. A survey of Fuzzy-Rough set based methods for attribute reduction is presented here.
متن کاملFuzzy Rough Set Conditional Entropy Attribute Reduction Algorithm
Modern science is increasingly data-driven and collaborative in nature. Comparing to ordinary data processing, big data processing that is mixed with great missing date must be processed rapidly. The Rough Set was generated to deal with the large data. The QuickReduct is a popular attribute algorithm as the attribute reduction of big database. But less effort has been put on fuzziness and vague...
متن کاملFuzzy and Rough Set Approaches for Uncertainty in Spatial Data
The management of uncertainty in databases is necessary for real world applications, especially for systems involving spatial data such as geographic information systems. Rough and fuzzy sets are important techniques that can be used in various ways for modeling uncertainty in data and in spatial relationships between data entities. This chapter discusses various approaches involving rough and ...
متن کاملConsistency-preserving attribute reduction in fuzzy rough set framework
Attribute reduction (feature selection) has become an important challenge in areas of pattern recognition, machine learning, data mining and knowledge discovery. Based on attribute reduction, one can extract fuzzy decision rules from a fuzzy decision table. As consistency is one of several criteria for evaluating the decision performance of a decision-rule set, in this paper, we devote to prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Fuzzy Systems
سال: 2020
ISSN: 1063-6706,1941-0034
DOI: 10.1109/tfuzz.2019.2921935